专题:新定义. 分析:由题意由于新定义了对称数列,且已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,故数列bn的前2010项利用等比数列的前n项和定义直接可求(1)(2)的正确与否;对于(3),先从等比数列的求和公式求出任意2m项的和在利用减法的到需要的前201008项的和,即可判断. 解答:解:因为数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,故数列bn的前2010项可以是:①1,2,22,23…,21005,21005,…,22,1. 所以前2010项和S2010=2×=2(21005-1),所以(1)错(2)对; 对于 (3)1,2,22,…2m-2,2m-1,2 m-2,…,2,1,1,2,…2m-2,2m-1,2 m-2,…,2,1…m-1=2n+1,利用等比数列的求和公式可得:S2010=2m+1-22m-2010-1,故(3)正确. 故为C 点评:本题以新定义对称数列为切入点,运用的知识都是数列的基本知识:等差数列的通项及求和公式,等比数列的通项及求和公式,还体现了分类讨论在解题中的应用. |