函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )A.ex+1B.ex-1C.e-x+1D.e-x-1
题型:不详难度:来源:
函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )A.ex+1 | B.ex-1 | C.e-x+1 | D.e-x-1 |
|
答案
D |
解析
曲线y=ex关于y轴对称的曲线为y=e-x,将y=e-x向左平移1个单位长度得到y=e-(x+1),即f(x)=e-x-1. |
举一反三
对定义域分别是Df,Dg的函数y=f(x),y=g(x),规定:函数h(x)= (1)若函数f(x)=,g(x)=x2,写出函数h(x)的解析式; (2)求问题(1)中函数h(x)的值域. |
某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) |
设函数f(x)=ax2+bx+b-1(a≠0). (1)当a=1,b=-2时,求函数f(x)的零点; (2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围. |
有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且k∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用. (1)若只投放一次k个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k的值; (2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟? |
已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________. |
最新试题
热门考点