已知椭圆的顶点与双曲线y24−x212=1的焦点重合,它们的离心率之和为13/5,若椭圆的焦点在x轴上,求椭圆的标准方程.

已知椭圆的顶点与双曲线y24−x212=1的焦点重合,它们的离心率之和为13/5,若椭圆的焦点在x轴上,求椭圆的标准方程.

题目
已知椭圆的顶点与双曲线
y
答案
设所求椭圆方程为
x2
a2
+
y2
b2
=1

其离心率为e,焦距为2c,
双曲线
y2
4
x2
12
=1
的焦距为2c1,离心率为e1,(2分)
则有:c12=4+12=16,c1=4                                      (4分)
e1
c1
2
=2
(6分)
e=
13
5
−2=
3
5

c
a
3
5
①(8分)
又b=c1=4    ②(9分)
a2=b2+c2③(10分)
由①、②、③可得a2=25
∴所求椭圆方程为
x2
25
+
y2
16
=1
(12分)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.