用二项式定理证明:(n+1)^n-1能被n^2整除

用二项式定理证明:(n+1)^n-1能被n^2整除

题目
用二项式定理证明:(n+1)^n-1能被n^2整除
答案
(n+1)^n-1=C(n,0)n^n+C(n,1)n^(n-1)+……+C(n,n-2)n^2+C(n,n-1)+C(n,n)-1=C(n,0)n^n+C(n,1)n^(n-1)+……+C(n,n-2)n^2+C(n,n-1)n对3以上的数除去最后一项都很容易看出是n^2的整数倍,而最后一项变形后就是C(n,1)n,...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.