设f(x)是(-∞,+∞)上的连续偶函数,证明:F(x)=∫(0→x)f(t)dt是奇函数

设f(x)是(-∞,+∞)上的连续偶函数,证明:F(x)=∫(0→x)f(t)dt是奇函数

题目
设f(x)是(-∞,+∞)上的连续偶函数,证明:F(x)=∫(0→x)f(t)dt是奇函数
答案
证明:f(x)是R上的连续偶函数:f(-x)=f(x)F(x)=∫(0→x) f(t) dtF(-x)=∫ (0→-x) f(t) dt (令m=-t,t=-m)=∫ (0→x) f(-m) d(-m)=- ∫ (0→x) f(-m) dm=- ∫ (0→x) f(m) dm=-∫ (0→x) f(t) dt=-F(x)所以:F(x)是...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.