求不定积分∫tanx (secx)^2 dx

求不定积分∫tanx (secx)^2 dx

题目
求不定积分∫tanx (secx)^2 dx
转化为∫u du=(u^2)/2
如果把u=tanx,则原式=∫u (sec)^2 dx=∫u du=((tanx)^2)/2
但是如果把secx作为u,则原式=∫u (secx tanx)dx=∫u du=((secx)^2)/2
为什么会这样?是我算错了吗?请指教,
答案
∫ tanxsec²x dx = ∫ tanx dtanx
= (1/2)tan²x + C
= (1/2)(sec²x - 1) + C
= (1/2)sec²x + (C - 1/2)
= (1/2)sec²x + D,where D = C - 1/2
两个答案都行.
恒等式1 + tan²x = sec²x
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.