三角形重心到顶点的距离等于它到对边中点距离的2倍,怎么证明?

三角形重心到顶点的距离等于它到对边中点距离的2倍,怎么证明?

题目
三角形重心到顶点的距离等于它到对边中点距离的2倍,怎么证明?
答案
过重心 作底边的平行线将三角形分成一个三角形和一个梯形这两部分面积应该相等可以设这条平行线将高分成两部分x y三角形面积为 x*[x/(x+y)]*a/2梯形面积为 y*{[x/(x+y)]*a+a}/2两部分面积相等 解得 x=2y即x:y=2:1根...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.