an前n项和为sn 已知a1=1 S(n+1)=4an+2 设bn=a(n+1)-2an 证明数列{bn}为等比数列 求数列{an}通项公式

an前n项和为sn 已知a1=1 S(n+1)=4an+2 设bn=a(n+1)-2an 证明数列{bn}为等比数列 求数列{an}通项公式

题目
an前n项和为sn 已知a1=1 S(n+1)=4an+2 设bn=a(n+1)-2an 证明数列{bn}为等比数列 求数列{an}通项公式
答案
S(n+1)=4(An)+2
Sn=4A(n-1)+2
两式相减
A(n+1)=S(n+1)-Sn=4An-4A(n-1)
A(n+1)-4An+4A(n-1)=0
A(n+1)-2An=2An-4A(n-1)=2(An-2A(n-1))
S2=4A1+2=4+2=6
A2=S2-A1=6-1=5
A2-2A1=5-2=3
{A(n+1)-2An},即{bn}是以3为首项,2为公比的等比数列
A(n+1)-2An=3×2^(n-1)
两边同除2^(n+1)
A(n+1)/2^(n+1)-2An/2^(n+1)=3×2^(n-1)/2^(n+1)
A(n+1)/2^(n+1)-An/2^n=3/4
依此类推
An/2^n-A(n-1)/2^(n-1)=3/4
A(n-1)/2^(n-1)-A(n-2)/2^(n-2)=3/4
……
A2/2-A1/1=3/4
上式相加,相同项消去
An/2^n-A1/2^1=3(n-1)/4
An/2^n=3(n-1)/4+1/2=(3n-1)/4
An=(3n-1)×2^(n-2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.