已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm. (1)写出y与x的函数关系式; (2)求自变量x的取值范围.
题目
已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.
(1)写出y与x的函数关系式;
(2)求自变量x的取值范围.
答案
(1)依题意有:y=12-2x,
故y与x的函数关系式为:y=12-2x;
(2)依题意有:
,
即
,
解得:3<x<6.
故自变量x的取值范围为3<x<6.
(1)底边长=周长-2×腰长;
(2)根据三角形三边关系定理:三角形任意两边之和大于第三边来进行解答.
根据实际问题列一次函数关系式;等腰三角形的性质.
本题的难点在于根据三角形三边关系定理得到自变量的取值范围.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点