设f(x)是连续函数 则 ∫f(x)dx-∫f(a+b-x)dx= 上标b 下标a

设f(x)是连续函数 则 ∫f(x)dx-∫f(a+b-x)dx= 上标b 下标a

题目
设f(x)是连续函数 则 ∫f(x)dx-∫f(a+b-x)dx= 上标b 下标a
答案
是0
证明:做变量替换a+b-x=t,则dx=-dt,当x=b,t=a,当x=a,t=b
于是
∫(a,b)f(a+b-x)dx =-∫(b,a)f(t)dt= ∫(a,b)f(t)dt=∫(a,b)f(x)dx
即∫(a,b)f(x)dx=∫(a,b)f(a+b-x)dx
【注:紧跟积分符号后面的为积分区间】
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.