已知函数f(x)=ln(ax+1)+1−x1+x,x≥0,其中a>0.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)的最小值为1,求a的取值范围.

已知函数f(x)=ln(ax+1)+1−x1+x,x≥0,其中a>0.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)的最小值为1,求a的取值范围.

题目
已知函数f(x)=ln(ax+1)+
1−x
1+x
,x≥0,其中a>0.
(Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)的最小值为1,求a的取值范围.
答案
(Ⅰ)f′(x)=
a
ax+1
-
2
(1+x)2
=
ax2+a-2
(ax+1)(1+x)2

∵f′(x)在x=1处取得极值,f′(1)=0
  即 a+a-2=0,解得  a=1
(Ⅱ)f′(x)=
ax2+a-2
(ax+1)(1+x)2

∵x≥0,a>0,
∴ax+1>0
①当a≥2时,在区间(0,+∞)上f′(x)>0.
∴f(x)的单调增区间为(0,+∞)
②当0<a<2时,由f′(x)>0解得x>
2-a
a

f′(x)<0解得x<
2-a
a

∴f(x)的单调减区间为(0,
2-a
a
)
,单调增区间为(
2-a
a
,+∞)

(Ⅲ)当a≥2时,由(II)知,f(x)的最小值为f(0)=1
当0<a<2时,由(II)②知,f(x)在x=
2-a
a
处取得最小值f(
2-a
a
)<f(0)=1

综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞)
(Ⅰ)对函数求导,令f′(1)=0,即可解出a值.
(Ⅱ)f′(x)>0,对a的取值范围进行讨论,分类解出单调区间.a≥2时,在区间(0,+∞)上是增函数,
(Ⅲ)由(2)的结论根据单调性确定出最小值,当a≥2时,由(II)知,f(x)的最小值为f(0)=1,恒成立;当0<a<2时,判断知最小值小于1,此时a无解.当0<a<2时,(x)的单调减区间为(0,
2−a
a
)
,单调增区间为(
2−a
a
,+∞
)

利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.

考查导数法求单调区间与求最值,本类题型是导数的主要运用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.