一个转动惯量为J的圆盘绕一固定轴转动,初角速度为W0,受到一个与转动角速度成正比的阻力矩M=-KW(K为常数
题目
一个转动惯量为J的圆盘绕一固定轴转动,初角速度为W0,受到一个与转动角速度成正比的阻力矩M=-KW(K为常数
答案
求的是什么?应该是速度随时间的变化吧
根据转动定律
M=Jβ,故-kw=J(dw/dt)
-k·dt=J·dw/w
两边积分,解微分方程
∫-k·dt=∫J·dw/w(积分上下限分别是初末的时间和角速度)
解得的结果是△t=(J/k)·ln(w0/w)
如果需要的是角速度和时间的关系就是w=w0·e^(kt/J)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点