求证:一定存在能被1999整除的形如111...11的自然数.

求证:一定存在能被1999整除的形如111...11的自然数.

题目
求证:一定存在能被1999整除的形如111...11的自然数.
求证:一定存在能被1999整除的形如111...11的自然数.
答案
引理:若1,11,111,1111...1999个1中没有一个是1999的倍数,
则任意a,b=1,2,...1999满足a个1与b个1除1999余数不相同
证明:反证法(不妨设a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.