设f(x,y)连续,且f(0,0)=2,利用二重积分的中值定理证明下式

设f(x,y)连续,且f(0,0)=2,利用二重积分的中值定理证明下式

题目
设f(x,y)连续,且f(0,0)=2,利用二重积分的中值定理证明下式
答案
证明:因为f(x,y)连续,由积分中值定理,存在(a,b)属于x^2+y^2《r^2,使:
二重积分=f(a,b)πr^2,当r趋于0时,limf(a,b)=f(0,0)=2
极限=lim(1/r^2)f(a,b)πr^2=πlimf(a,b)=2π
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.