已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
题目
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
答案
an+2Sn*Sn-1=0
其中an=Sn-Sn-1代入上式:
Sn-Sn-1+2Sn*Sn-1=0
a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:
1/Sn-1-1/Sn+2=0
即:1/Sn-1/Sn-1=2
{1/Sn}为等差数列,公差为2,首项1/S1=1/a1=2
1/Sn=2+2(n-1)=2n
Sn=1/2n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点