已知P为椭圆x24+y2=1上任意一点,F1,F2是椭圆的两个焦点,求: (1)|PF1|•|PF2|的最大值; (2)|PF1|2+|PF2|2的最小值.

已知P为椭圆x24+y2=1上任意一点,F1,F2是椭圆的两个焦点,求: (1)|PF1|•|PF2|的最大值; (2)|PF1|2+|PF2|2的最小值.

题目
已知P为椭圆
x
答案
(1)|PF1|•|PF2|≤(
|PF1|+|PF2|
2
)2a2=4

故:|PF1|•|PF2|的最大值是4;
(2)|PF1|2+|PF2|2=(|PF1|+|PF2|)2−2|PF1|•|PF2|≥4a2−2×(
|PF1|+|PF2|
2
)2=2a2=8

|PF1|2+|PF2|2的最小值是8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.