如图,在△ABC中,AB=AC,P、Q、R分别在AB、AC上,且BP=CQ,BQ=CR. 求证:点Q在PR的垂直平分线上.

如图,在△ABC中,AB=AC,P、Q、R分别在AB、AC上,且BP=CQ,BQ=CR. 求证:点Q在PR的垂直平分线上.

题目
如图,在△ABC中,AB=AC,P、Q、R分别在AB、AC上,且BP=CQ,BQ=CR.
求证:点Q在PR的垂直平分线上.
答案
证明:∵在△ABC中,AB=AC,
∴∠B=∠C,
在△PBQ和△CQR中,
BP=CQ
∠B=∠C
BQ=CR

∴△BPQ≌△CQR(SAS),
∴PQ=RQ,
∴点Q在PR的垂直平分线上.
由在△ABC中,AB=AC,且BP=CQ,BQ=CR,易证得△BPQ≌△CQR,即可得PQ=RQ,即可证得点Q在PR的垂直平分线上.

线段垂直平分线的性质;全等三角形的判定与性质.

此题考查了线段垂直平分线的判定、等腰三角形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.