证明:三角形ABC是等边三角形的充要条件是a^+b^+c^=ab+ac+bc,这里a,b,c是三角形ABC的三条边
题目
证明:三角形ABC是等边三角形的充要条件是a^+b^+c^=ab+ac+bc,这里a,b,c是三角形ABC的三条边
答案
方程两边同*2,得2a^+2b^+2c^=2ab+2ac+2bc移项,得(a^-2ab+b^)+(a^-2ac+b^)+(b^-2bc+c^)=0所以(a-b)^+(b-c)^+(a-c)^=0因为(a-b)^、(b-c)^、(a-c)^分别大于等于0所以a-b=0、b-c=0、a-c=0即a=b=c所以 三角形ABC是等边三...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点