计算二重积分∫∫xydxdy,其中D是y=x^2 y^2=x所围成区域
题目
计算二重积分∫∫xydxdy,其中D是y=x^2 y^2=x所围成区域
答案
容易求得两曲线交点为(0,0)、(1,1),所以原式=∫[0,1] x dx∫[x^2,√x] ydy=∫[0,1]xdx(1/2*y^2)|[x^2,√x]=∫[0,1] x*(1/2*x-1/2*x^4)dx=(1/6*x^3-1/12*x^6)|[0,1]=(1/6-1/12)-0=1/12 ....
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点