已知O为ΔABC的重心,证明 向量OA+向量OB+向量OC=0
题目
已知O为ΔABC的重心,证明 向量OA+向量OB+向量OC=0
答案
A(x1,y1),B(x2,y2),C(x3,y3)
则重心坐标为
O=((x1+x2+x3)/3,(y1+y2+y3)/3)
OA=(x1-(x1+x2+x3)/3,y1-(y1+y2+y3)/3)
OB=(x2-(x1+x2+x3)/3,y2-(y1+y2+y3)/3)
OC=(x3-(x1+x2+x3)/3,y3-(y1+y2+y3)/3)
OA+OB+OC=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点