当n>m>=4时,求证:(mn^n)^m>(nm^m)^n

当n>m>=4时,求证:(mn^n)^m>(nm^m)^n

题目
当n>m>=4时,求证:(mn^n)^m>(nm^m)^n
这个是高中的题,是出现在最后一题中的。
答案
这个题目老师前2天刚讲过
便宜你了
我直接奉上标准解答!
解析:
(1)
f'=a+lnx+1
a+2=3
a=1
(2)f(x)=x(1nx+1)
构造一个函数g(x)=f(x)/(x-1)(x>1)
则g'(x)=(x-1nx-2)/(x-1)²
令h(x)=x-1nx-2(x>1),则h'(x)=1-(1/x)=(x-1)/x>0
∴h(x)在(1,+∞)上单调递增
又h(3)=1-1n30
∴h(x)在区间(3,4)上有一个零点,记为x₀,则x₀=1nx₀+2
当10
∴g(x)在(1,x₀)上单调递减,在(x₀,+∞)上单调递增
∴g(x)有最小值g(x₀)=f(x₀)/(x₀-1)=x₀(1nx₀+1)/(x₀-1)=x₀
∴km>1时,n·ln(n)/(n-1)>m·1n(m)/(m-1)成立
构造一个函数f(x)=x1nx/(x-1)(x>1)
则f'(x)=(x-1nx-1)/(x-1)²
令g(x)=x-1nx-1(x>1),则g'(x)=1-(1/x)=(x-1)/x>0
∴g(x)在(1,+∞)上单调递增
又g(1)=0,∴g(x)>0 ∴f'(x)>0
∴f(x)在(1,+∞)上单调递增
∴当n>m>1时,n·ln(n)/(n-1)>m·1n(m)/(m-1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.