证明对任意的正整数n,不等式nlnn≥(n-1)ln(n+1)都成立

证明对任意的正整数n,不等式nlnn≥(n-1)ln(n+1)都成立

题目
证明对任意的正整数n,不等式nlnn≥(n-1)ln(n+1)都成立
答案
设f(n)=lnn/(n-1) f'(n)=(n-1-nlnn)/(n(n-1)^2) 设g(n)=n-1-nlnn g'(n)=-lnn 因为n>=1,所以lnn>=0,g'(n)=1,所以f''(n)>=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.