互相垂直的两条直线的斜率乘积为什么等于负一?
题目
互相垂直的两条直线的斜率乘积为什么等于负一?
答案
由于两条平行直线斜率相同,可以将平面内任意两条垂直直线平移到原点处的两条相交直线.所以只对以原点为交点的两条相交直线进行证明,利用 两直线的斜率乘积等于tana*tan(a+90)=tana*(-cota)=-1方可证明
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点