设a为常数,a>1,0≤x≤2π,则函数f(x)=cos^2+2asinx-1的最大值为多少?

设a为常数,a>1,0≤x≤2π,则函数f(x)=cos^2+2asinx-1的最大值为多少?

题目
设a为常数,a>1,0≤x≤2π,则函数f(x)=cos^2+2asinx-1的最大值为多少?
前面的都懂了我也能够化成顶点式 为什么在sinx=1时能够取到最大值而不是sinx=-1时取到最大值
答案
f'(x)=-2cosx*sinx+2acosx
令f'(x)=0
即sinx=a
则当sinx=a时,f(x)取极值
又a>1,-1≤sinx≤1
故sinx最大取1
f(x)=1-a^2+2*a*a-1
=a^2
=1
像你所说,若sinx=-1时,即a=-1,不满足a>1的条件
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.