已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=( ) A.2 B.4 C.6 D.8
题目
已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=( )
A. 2
B. 4
C. 6
D. 8
答案
法1.由双曲线方程得a=1,b=1,c=2,由余弦定理得cos∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1||PF2|⇒cos60°=(|PF1|-|PF2|)2+2|PF1||PF2|-|F1F2|22|PF1||PF2|⇒12=22+2|PF1||PF2|-(22)22|PF1||PF2|∴|PF1|•|PF2|=4.法...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点