函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值与最小值之和为a,求a的值.
题目
函数f(x)=ax+loga(x+1)(a>0,且a≠1)在[0,1]上的最大值与最小值之和为a,求a的值.
答案
由于指数函数和对数函数的单调性是一致的,
故函数f(x)=a
x+log
a(x+1)(a>0,且a≠1)在[0,1]上必为单调函数,
在[0,1]上的最大值与最小值之和为a,故有 f(0)+f(1)=(1+0)+(a+log
a2)=a,
解得 a=
.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点