数学帝来呀…………已知中心在原点,焦点在x轴上的椭圆的离心率为2倍根号2

数学帝来呀…………已知中心在原点,焦点在x轴上的椭圆的离心率为2倍根号2

题目
数学帝来呀…………已知中心在原点,焦点在x轴上的椭圆的离心率为2倍根号2
已知中心在原点,焦点在x轴上的椭圆的离心率为2倍根号2 ,F1、F2为其焦点,一直线过点F1与椭圆相交于A/B两点,且三角形F2AB的最大面积为根号2,求椭圆的方程.
救人一命胜造七级浮屠,虽然我穷得没有悬赏的分了,冰天雪地跪谢!
哦打错了 是二分之根号二………………
答案
由于离心率为√2/2,所以c/a=√2/2,又根据椭圆定义,a^2=b^2+c^2,联合解得
a^2=2b^2且b=c.故椭圆方程可写为
x^2/2b^2+y^2/b^2=1.
可设,过F1点的直线方程式为Y=Kx+B,且经过点
(-3,0),故方程可写成Y=K(x+c).
代入椭圆方程式,化简得到:
y^2(1+2k^2)-2bky-b^2=0,解得
y1-y2=8k^2b^2(1+k^2).
三角形F2AB的面积其实就是2c为底边,y的绝对值为高的二个三角形之和,加在一起就是
c*(y1-y2),又因为c是固定的,所以,最大面积取决于(y1-y2),又因为
y1-y2=8k^2b^2(1+k^2).所以k=+∞时,面积最大.
当k=+∞时,直线方程可变成x=-c.
再代入椭圆方程再加上(a^2=2b^2且b=c)解得
y=+与-(√2/2)*b.
则y1-y2=√2b.
最大面积=c*(y1-y2)=√2cb=√2,又因为
b=c,所以b=c=1,b^2=c^2=1.又因为a^2=2b^2,所以a^2=2.
所以解得椭圆方程:
(x^2/2)+(y^2)=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.