不等式证明 ab=1 求证a^2+b^2>=2根号2 (a-b)

不等式证明 ab=1 求证a^2+b^2>=2根号2 (a-b)

题目
不等式证明 ab=1 求证a^2+b^2>=2根号2 (a-b)
2根号2与(a-b)的积
答案
∵a^2 +b^2 ≥2√2(a - b)
∴(a-b)^2 +2 ≥2√2(a - b)
令x=a-b,则x^2 -2√2x+2≥0 即(x-√2)^2≥0
∵(x-√2)^2≥0恒成立 ∴原题得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.