求1+11+111+……+111……1的通项公式

求1+11+111+……+111……1的通项公式

题目
求1+11+111+……+111……1的通项公式
答案
1+11+111+1111+111...1
=1+(10+1)+(10^2+10+1)+(10^3+10^2+1)+...+[10^n+10^(n-1)+...1]
=1×n+10(n-1)+10^2(n-2)+...+10^n[n-(n-1)]
设Sn=1×n+10(n-1)+10^2(n-2)+...+10^n (1)
10sn=10+10^2(n-1)+10^3(n-2)+...+10^(n+1)n(2)
∴(1)-(2):
-9Sn=n+[10+10^2+10^3+10^n]-10^(n+1)n
-9Sn=n-10^(n+1)+{10[1-10^n]/(1-10)}
={n-10^(n+1)}-{10[1-10^n]/9}
∴Sn={-{n-10^(n+1)}/9}-{10[1-10^n]/81}
=10^(n+1)/9-(n/9)-{10[1-10^n]/81}
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.