三角形ABC的面积为S,外接圆的半径为R,角A角B角C对边分别为a,b,c

三角形ABC的面积为S,外接圆的半径为R,角A角B角C对边分别为a,b,c

题目
三角形ABC的面积为S,外接圆的半径为R,角A角B角C对边分别为a,b,c
用解析几何的方法证明:R=abc/4S .
答案
证明:
由正弦定理可知:c/sinC=2R,
∴sinC=c/(2R)
再由三角形面积公式,可知:
S=(½)absinC
结合上面结果,可得:
S=(½)ab×[c/(2R)]=abc/(2R)
整理可知:R=abc/(4S)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.