1乘2 分之1加2乘3 分之1加...加49乘50 分之1加50乘51 分之1=?
题目
1乘2 分之1加2乘3 分之1加...加49乘50 分之1加50乘51 分之1=?
多谢各位大哥大嫂大叔大婶大爷大妈了!
答案
=50-(1/2+1/3+.1/50)
=51-(1+1/2+1/3+.1/50)
会了不,希望一点就通哈因为
Euler(欧拉)在1734年,利用Newton的成果,首先获得了调和级数有限多项和的值.结果是:
1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量)
Euler近似地计算了r的值,约为0.577218.叫着欧拉常数.
也就是原题=51-ln(50+1)+0.577218
不知道你学过欧拉定律没?恩你没说你几年级哈
1665年牛顿在他的著名著作《流数法》中推导出第一个幂级数:
ln(1+x) = x - x2/2 + x3/3 - ...
Euler(欧拉)在1734年,利用Newton的成果,首先获得了调和级数有限多项和的值.结果是:
1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量)
他的证明是这样的:
根据Newton的幂级数有:
ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...
于是:
1/x = ln((x+1)/x) + 1/2x^2 - 1/3x^3 + ...
代入x=1,2,...,n,就给出:
1/1 = ln(2) + 1/2 - 1/3 + 1/4 -1/5 + ...
1/2 = ln(3/2) + 1/2*4 - 1/3*8 + 1/4*16 - ...
.
1/n = ln((n+1)/n) + 1/2n^2 - 1/3n^3 + ...
相加,就得到:
1+1/2+1/3+1/4+...1/n = ln(n+1) + 1/2*(1+1/4+1/9+...+1/n^2) - 1/3*(1+1/8+1/27+...+1/n^3) + .
后面那一串和都是收敛的,我们可以定义
1+1/2+1/3+1/4+...1/n = ln(n+1) + r
Euler近似地计算了r的值,约为0.577218.这个数字就是后来称作的欧拉常数.不过遗憾的是,我们对这个常量还知之甚少,连这个数是有理数还是无理数都还是个谜.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 在一张长30厘米,宽20厘米的长方形纸的四个角上分别剪去边长为5厘米的四个小正方形.
- 因为正反应速率和逆反应速率相等,所以可逆反应达到平衡,
- walk straight,straight on,walk down ,go alone之间有什么区别?
- 朱自清写荷花的文章
- 化学反应中原子怎么会得失电子,化学反应的实质不是原子的***吗
- It is rainy here today,改为同义句
- 一元一次不等式组应用题 和 一元一次方程组应用题
- 小东有一辆自行车,车轮的直径大约是66cm,如果平均每分钟转100周,从家到学校的路程是2000m,大约需要多少分钟?
- x+20%x=6咋解?
- 某工程队要修一条路,第一个月修了全长的25%,第二个月又修了全长的一半,如果再修8千米就