已知,如图,在三角形ABC中,AD,AE分别是三角形ABC的高和角平分线.

已知,如图,在三角形ABC中,AD,AE分别是三角形ABC的高和角平分线.

题目
已知,如图,在三角形ABC中,AD,AE分别是三角形ABC的高和角平分线.
判断∠DAE与∠C-∠B的数量关系,并说明理由.
答案
方法一:
∠DAE=1/2*(∠C-∠B)
90°=∠DAE+∠AED
=∠DAE+∠EAC+∠C
=∠DAE+1/2*∠BAC+∠C
=∠DAE+1/2*(180°-∠A+∠C)+∠C
整理得∠DAC=1/2(∠C-∠B)
方法二:
∵∠A=180°-∠B-∠C(三角形内角和180),且AE平分∠BAC,
∴∠EAC=1/2*∠A(角平分线定义)
即:∠EAC=90°- (1/2)*(∠B+∠C)
∵AD⊥BC 
∴∠ADC=90(垂直定义)
∴∠DAC=90°- ∠C(三角形内角和180)
则∠EAD=∠EAC-∠DAC =[90°-(1/2)*(∠B+∠C)] - (90°-∠C) =(1/2)(∠C-∠B)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.