证明三角形面积等于abc/(4R) a b c为3边 R为外接圆半径

证明三角形面积等于abc/(4R) a b c为3边 R为外接圆半径

题目
证明三角形面积等于abc/(4R) a b c为3边 R为外接圆半径
答案
根据正弦定理:a/sinA=b/sinB=c/sinC=2R.其中a、b、c分别为角A、B、C的对边,R为外接圆半径.三角型面积=1/2absinC=1/2abc/2R=abc/4R 有不明白再问吧……希望对您有帮助……
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.