已知递增等比数列{an}满足a2+a3+a4=28,a3+2是a2与a4的等差中项,求{an}的通项公式.

已知递增等比数列{an}满足a2+a3+a4=28,a3+2是a2与a4的等差中项,求{an}的通项公式.

题目
已知递增等比数列{an}满足a2+a3+a4=28,a3+2是a2与a4的等差中项,求{an}的通项公式.
答案
设首项为a1,公比为q(q>1)
所以a1*q+a1*q^2+a1*q^3=28
a1*q+a1*q^3=2*(a1*q^2+2)
联立解得:a1=2 q=2
所以 an=2^n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.