设x,y满足约束条件3x−y−6≤0x−y+2≥0x≥0,y≥0,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则2a+3b的最小值为( ) A.256 B.83 C.113 D.4
题目
设x,y满足约束条件
,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则
+的最小值为( )
A.
B.
C.
D. 4
答案
不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而2a+3b=(2a+3b)2a+3b6=136...
已知2a+3b=6,求
+的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答.
基本不等式;二元一次不等式(组)与平面区域.
本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点