函数f(x)=(cosx)^2+sinx在区间[-π/4,π/4]上的最小值是多少

函数f(x)=(cosx)^2+sinx在区间[-π/4,π/4]上的最小值是多少

题目
函数f(x)=(cosx)^2+sinx在区间[-π/4,π/4]上的最小值是多少
答案
f(x)=cos²x+sinx
=1-sin²x+sinx
=-(sinx-1/2)²+5/4
∵x∈[-π/4,π/4]
∴sinx∈[-√2/2,√2/2]
又∵对称轴为sinx=1/2
当sinx=-√2/2 即x=-π/4时,(离对称轴较远)
f(x)取得最小值:cos²(-π/4)+sin(-π/4)=1/2-√2/2
希望我的解答对你有所帮助
别忘了及时采纳哦!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.