在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC. (Ⅰ)求角A的大小; (Ⅱ)若sinB+sinC=3,试判断△ABC的形状.
题目
在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC.
(Ⅰ)求角A的大小;
(Ⅱ)若sinB+sinC=
,试判断△ABC的形状.
答案
(Ⅰ)由2asinA=(2b-c)sinB+(2c-b)sinC,
利用正弦定理化简得:2a
2=(2b-c)b+(2c-b)c,…(2分)
整理得:bc=b
2+c
2-a
2,
∴cosA=
=
,…(4分)
又A为三角形的内角,
则A=60°;…(5分)
(Ⅱ)∵A+B+C=180°,A=60°,
∴B+C=180°-60°=120°,即C=120°-B,…(6分)
代入sinB+sinC=
得:sinB+sin(120°-B)=
,…(7分)
∴sinB+sin120°cosB-cos120°sinB=
,…(8分)
∴
sinB+
cosB=
,即sin(B+30°)=1,…(10分)
∴0<B<120°,
∴30°<B+30°<150°,
∴B+30°=90°,即B=60°,…(11分)
∴A=B=C=60°,
则△ABC为等边三角形.…(12分).
(Ⅰ)利用余弦定理表示出cosA,然后根据正弦定理化简已知的等式,整理后代入表示出的cosA中,化简后求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(Ⅱ)由A为60°,利用三角形的内角和定理得到B+C的度数,用B表示出C,代入已知的sinB+sinC=
中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围,求出这个角的范围,利用特殊角的三角函数值求出B为60°,可得出三角形ABC三个角相等,都为60°,则三角形ABC为等边三角形.
余弦定理;三角形的形状判断.
此题考查了三角形形状的判断,正弦、余弦定理,两角和与差的正弦函数公式,等边三角形的判定,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 一个装满8升水的杯子,现有3升和5升的空杯各1个,怎样倒进4升水?
- the spring festival
- 英语翻译
- 车站有一批货物,第一次运走了1/4,第二次运走了2/5,还剩80吨没运走,车站有货物多少吨
- 琼安国际酒店运来2吨大米,吃了五分之二.吃了的占剩下的几分之几?
- 如何理解地转偏向力:北半球向右,南半球向左 ?
- 了解许多关于世界的知识 英语
- they are playing basketball for money对for money 提问
- The___of clapping should date from many years ago.A.Custom B.customsC.habiting D.habits请说明理由
- 一个质量为0.25kg的玻璃瓶,盛满水时称得质量是1.25kg,若盛满某液体时称得质量是1.45kg,那么这种液体的密
热门考点