根据地球上两个地点的经度和纬度,如何获得这两点的球面距离或直线距离?有无定理公式?
题目
根据地球上两个地点的经度和纬度,如何获得这两点的球面距离或直线距离?有无定理公式?
根据地球上两个地点的经度和纬度,如何获得这两点的球面距离或直线距离?
有无定理公式?
假设前提是两个地点均在地表面的零海拔,且地球为理想球体.
假设A点的经度、纬度分别为λA和ΦA, B点的经度、纬度分别为λB和ΦB,d为距离.
D = arc cos((sin北纬A×sin北纬B)+(cos北纬A×cos北纬B×cosAB两地经度差绝对值) )×地球平均半径
= 6371.004×cos-1[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]
其中地球平均半径为6371.004 km,D的单位为km
-------------------------------------------------------
至于网上流传的以下公式,经推导验证都是错误的.
D=111.12×cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}
D=111.12×cos-1[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]
D = arc cos(sin北纬A×sin北纬B+cos北纬A×cos北纬B×cosAB两地经度差绝对值)÷360×2PI×6371
验证条件:
纬度只差1度时的距离为
D1 = 地球经线或赤道周长÷360
= 6371.004×2×3.1415926536÷360
= 111.19499645809008 km
约111.2千米.
答案
假设前提是两个地点均在地表面的零海拔,且地球为理想球体.
假设A点的经度、纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离.
D = arc cos((sin北纬A×sin北纬B)+(cos北纬A×cos北纬B×cosAB两地经度差绝对值) )×地球平均半径
= 6371.004×cos-1[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]
其中地球平均半径为6371.004 km,D的单位为km
-------------------------------------------------------
至于网上流传的以下公式,经推导验证都是错误的.
D=111.12×cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}
D=111.12×cos-1[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]
D = arc cos(sin北纬A×sin北纬B+cos北纬A×cos北纬B×cosAB两地经度差绝对值)÷360×2PI×6371
验证条件:
纬度只差1度时的距离为
D1 = 地球经线或赤道周长÷360
= 6371.004×2×3.1415926536÷360
= 111.19499645809008 km
约111.2千米.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点