过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D. (1)求D的面积A; (2)求D绕直线x=e旋转一周所得旋转体的体积V.
题目
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.
(1)求D的面积A;
(2)求D绕直线x=e旋转一周所得旋转体的体积V.
答案
建立直角坐标系,作出y=lnx曲线及其过原点的切线.(1)设切点的横坐标为x0,则曲线y=lnx在点(x0,lnx0)处的切线方程是y=lnx0+1x0(x−x0).①由该切线过原点知 lnx0-1=0,从而x0=e.代入①式得该切线的方程...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点