一道关于勾股定理数学题

一道关于勾股定理数学题

题目
一道关于勾股定理数学题
勾股定理的问题:等腰直角三角形ABC(A为直角顶点)内一点p,连接AP、BP、CP,PA=1,PC=根号7,PB=3,求角CPA的大小?
答案
将△ABP绕A点旋转,然后连接PQ,
则AQ=AP=1,CQ=AB=3,∠QAC=∠PAB,
又∵∠PAB+∠PAC=90°,
所以∠PAQ=∠QAC+∠CAP=∠PAB+∠PAC=90°,
所以PQ2+AQ2+AP2=2,且∠QPA=45°,
在△CPQ中,PC2+PQ2=7+2=9=CQ2
∴∠QPC=90°,
∴∠CPA=∠QPA+∠QPC=135°.
故答案为:135°.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.