求数学高手:连续N个整数的积,必能被N!整除的证明
题目
求数学高手:连续N个整数的积,必能被N!整除的证明
因对网上的证明都不满意,所以求高手给个简单且有说服力的证明.要求:
1、不要用排列组合m(m+1)...(m+n-1)/n!公式,因为这是一种投机取巧的方法,没有从根本上说明为什么能被n!整除.况且我把题目改为“证明当N为奇数时,连续2N个奇数的乘积,必然能被1*3*5*7*.N的连乘积的平方整除”时,排列组合公式将毫无作用;
2、也不要用“任意连续N个整数中,必有一个能被N整除.同理可以知道连续N个数中至少有一个能被N-1;N-2;……2,1整除.所以这连续N个数之积能被N!整除”这样的证明.我认为,你虽然能证明它能被1,2,3.N整除,但还不够说明它就能被1,2,3...N的乘积整除.比如:你能证明24能被8整除,也同时能被6整除,难道你就能说24能被8*6整除吗?
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点