证明函数f(x)=x的4次方﹢1是偶函数且在[0,正无穷]上是增加的

证明函数f(x)=x的4次方﹢1是偶函数且在[0,正无穷]上是增加的

题目
证明函数f(x)=x的4次方﹢1是偶函数且在[0,正无穷]上是增加的
答案
这个函数定义域是R;
f(-x)=(-x)的4次方+1=x的4次方+1=f(x)
这个函数是偶函数.
设:x1>x2>0,则:
f(x1)-f(x2)
=[x1的4次方+1]-[x2的4次方+1]
=[x1的4次-x2的4次方]
=(x1²-x2²)(x1²+x2²)
=(x1-x2)(x1+x2)(x1²+x2²)
因为x1>x2>0,则:x1-x2>0、x1+x2>0、x1²+x2²>0
则:
f(x1)-f(x2)>0
f(x1)>f(x2)
所以这个函数在[0,+∞)上递增.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.