已知点P是椭圆x2/25+y2/9=1,F1F2为椭圆的焦点,求/pF1/*/PF2/的最大值
题目
已知点P是椭圆x2/25+y2/9=1,F1F2为椭圆的焦点,求/pF1/*/PF2/的最大值
答案
可知a=5,b=3,c=4,F1(-4,0),F2(4,0)
由均值不等式PF1+PF2>=2√(pF1*PF2),当且仅当PF1=PF2=a时pF1*PF2有最大值
所以10>=2√(pF1*PF2),解得pF1*PF2<=25.最大值是25.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- The big house b____to Tom,not to his brother
- 无尽的远方,无数的人们,都和我有关.这句话出自哪里,最好详细点,
- 呜呼哀哉,礼崩乐坏,
- 王师傅要加工一个零件原来要用52分钟,现在缩到4/15小时,缩短了多少小时?
- 问之有目者 和 扣盘而得其声 省略了什么?请从文中找出原词语
- 世界上第一台电子计算机诞生于
- 八年级下册英语时态总结
- 对于等差数列除以等比数列前n项和的求解
- 设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)ac的值;(Ⅱ)cotB+cot C的值.
- 中国在国际经济,文化舞台上所起的作用