证明:如果级数∑a(n)收敛,级数∑b(n)发散,则级数∑[a(n)+b(n)]发散.

证明:如果级数∑a(n)收敛,级数∑b(n)发散,则级数∑[a(n)+b(n)]发散.

题目
证明:如果级数∑a(n)收敛,级数∑b(n)发散,则级数∑[a(n)+b(n)]发散.
其中:
1、n均是从1到 无穷;
2、a(n),b(n)中的n是a,b的下标.
我证到lim(∑a(n) + ∑b(n))的时候后面就没有什么思路了,因为lim∑b(n)不存在(因为∑b(n)发散),所以不能拆成:lim(∑a(n) + ∑b(n)) = lim (∑a(n)) + lim (∑b(n)).
希望各位朋友不惜赐教,:)good day
答案
用反证法证明
假设∑[a(n)+b(n)]收敛
lim ∑b(n)=lim(∑a(n) + ∑b(n))-lim (∑a(n))
显然lim ∑b(n)存在,这样就得到矛盾.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.