点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=1/2∠A,BP、CP的延长线交AC、AB于D、E,求证:BE=CD.
题目
点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=
答案
证明:作BF⊥CE于F点,CM⊥BD于M点则∠PFB=∠PMC=90°.∵PG是BC的垂直平分线,∴PB=PC.在△PBF和△PCM中,∠PFB=∠PMC∠BPF=∠CPMPB=PC,∴△PBF≌△PCM(AAS),∴BF=CM;∵PB=PC,∴∠PBC=∠PCB=12∠BPE.∵...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 某服装商场一律降价20%,小红妈妈有优惠卡,还可打九折,小红妈妈买了一套450的衣服,这套衣服原价多少?
- 向量p=(bcosC, a+c) 向量q=((2a-c)cosB,4) 且p=q 其中 B C 为三角形ABC的内角 a b c为角A B C 的对边
- 七年级英语情景对话
- 家具设备的英语单词
- 托里拆利实验中,器材完好,在1标准大气压下,为什么测得大气压为78厘...
- 把小棒摆成六边形,摆一个六边形要6根小棒,摆两个六边形要11根小棒,摆n个六边形要几根小棒?
- 快 春风又绿江南岸的绿好在什么地方
- 语句比较复杂,请看怎么用英文表达比较清晰,
- 孩子们很快就要搬家了(用time的短语) the children will be leaving home-----------
- at、day、Tom、eight、every、wakes、o’clock、up〔.〕连词成句
热门考点
- 已知a+b=7,ab=11,求a^3+b^3和a^3-b^3
- 碳酸钙的性质及用途,盐酸硫酸的性质与用途
- 化学中量筒的用途是什么
- 想知道:f(x)=x3-3x k,g(x)=(2kx-k)/(x2 2)1/2×2/3×3/4×4/5×…×9想知道:f(x)=x3-3x k,g(x)=(2kx-k)
- 将光源放在凸透镜的什么地方,经过凸透镜折射后,光线平行于主光轴
- "全媒体时代"的内涵是什么?
- 化简:(a-b)²+(b-c)²+(c-a)²
- 比较25的180次方,64的120次方,81的90次方
- address oneself to的to是不是介词
- 两个自然数的乘积是72,除以这两个自然数的差,所得的商等于其中一个自然数,这个商是几?