在锐角三角形ABC中,角A.B.C的对边分别为a.b.c,b/a+a/b=6cosC,则tanC/tanA+tanC/tanB的值是——
题目
在锐角三角形ABC中,角A.B.C的对边分别为a.b.c,b/a+a/b=6cosC,则tanC/tanA+tanC/tanB的值是——
答案
sinB/sinA+sinA/sinB=6cosC
sin(A+C)/sinA+sin(B+C)/sinB=6cosC
(sinAcosC+cosAsinC)/sinA+(sinBcosC+cosBsinC)/sinB=6cosC
(cosC+sinC/tanA)+(cosC+sinC/tanB)=6cosC
(1+tanC/tanA)+(1+tanC/tanB)=6
tanC/tanA+tanC/tanB=4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点