已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率=√6/3,过右焦点的直线斜率为一,交椭圆于AB两点

已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率=√6/3,过右焦点的直线斜率为一,交椭圆于AB两点

题目
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率=√6/3,过右焦点的直线斜率为一,交椭圆于AB两点
若|AB|=根号3求b值.
答案
∵e=c/a=√6/3,∴c^2/a^2=6/9=2/3,∴(a^2-b^2)/a^2=2/3,∴1-b^2/a^2=2/3,
∴b^2/a^2=1/3,∴a^2=3b^2.
∴c^2/a^2=c^2/(3b^2)=2/3,∴c^2=2b^2,∴c=√2b.
显然,AB的方程是:y=x-c.
联立:y=x-c、x^2/a^2+y^2/b^2=1,消去y,得:x^2/a^2+(x-c)^2/b^2=1,
∴x^2/(3b^2)+(x-c)^2/b^2=1,
∴x^2+3(x-c)^2=3b^2,
∴x^2+3x^2-6cx+3c^2=3b^2,
∴4x^2-6√2x+6b^2=3b^2,
∴4x^2-6√2x+3b^2=0.
∵A、B在直线y=x-c上,∴可分别令A、B的坐标是(m,m-c)、(n,n-c).
很明显,m、n是方程4x^2-6√2x+3b^2=0的两根,
∴由韦达定理,有:m+n=3√2/2、mn=3b^2/4.
依题意,有:|AB|=√3,∴|AB|^2=3,∴(m-n)^2+[(m-c)-(n-c)]^2=3,
∴2(m-n)^2=3,∴(m-n)^2=3/2,∴(m+n)^2-4mn=3/2,
∴(3√2/2)^2-4(3b^2/4)=3/2,
∴9/2-3b^2=3/2,
∴b^2=3/2-1/2=1,
∴b=1.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.