已知函数f(x)是定义域为R的奇函数,且它的图象关于直线x=1对称. (1)求f(0)的值. (2)证明函数f(x)是周期函数.
题目
已知函数f(x)是定义域为R的奇函数,且它的图象关于直线x=1对称.
(1)求f(0)的值.
(2)证明函数f(x)是周期函数.
答案
(1)因为函数f(x)是定义域为R的奇函数,所以f(-x)=-f(x),当x=0时,f(-0)=-f(0),所以f(0)=0.
(2)因为函数关于x=1对称,所以f(1+x)=f(1-x),
即f(1+x)=f(1-x)=-f(x-1),
所以f(x+2)=-f(x),即f(x+4)=f(x).
所以函数是以4为周期的周期函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点