求数列lim√n(√(n 2)-√(n-1))的极限(n趋向于无穷大)

求数列lim√n(√(n 2)-√(n-1))的极限(n趋向于无穷大)

题目
求数列lim√n(√(n 2)-√(n-1))的极限(n趋向于无穷大)
答案
,如果是n-2的话
lim√n(√(n- 2)-√(n-1))=lim√n(-1)/(√(n- 2)+√(n-1))
=-√n/(√(n -2)+√(n-1))
分子分母同除以-√n
=-1/(√(1-2/n)+√(1-1/n))=-1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.