为什么简谐振动的位移,加速度都满足正余弦函数
题目
为什么简谐振动的位移,加速度都满足正余弦函数
答案
这个是微分方程解的结果,
-kx=ma=mx'
mx'+kx=0
只有位移是正弦函数,才满足.
因为位移是正弦函数sin形式,速度是位移对时间的一阶导数,就是cos形式,加速度是速度对时间的一阶导数,就是-sin形式,正好可以满足mx'+kx=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 两个素数,和是一个小于100的积数,又是十三的倍数,这是什么数
- 空气湿度99%是什么意思
- 急解一道质数与合数的数学题
- 闻郎江上唱歌声与闻岸上踏歌声有什么不同
- 描写樱花的语段
- 人们在游泳时潜入水下还能听到声音吗?这说明什么
- 一块正方形的地,边长43米,每平方米可种6.7千克菜,请问,这块地可以种多少千克青菜?
- 一箱苹果,已经吃了三分之二千克,剩下的比吃了的少八分之一,这箱水果有多少千克?
- 敞口放置的氢氧化钠容易变质,证明其变质的方法是
- 凡卡的结局